Hydrogen Science & Engineering

Dynamic Materials Testing in Hydrogen Gas at Sandia National Labs

Ken Lee Brian Somerday and Chris San Marchi

Outline

- Objectives
- Capabilities
- Design concept
- Transducers
- Test capability boundaries
- Gas management
- Safety considerations
- Challenges and successes
- Next generation design

Design objective to developing dynamic test capability

- Pressure = 140 MPa
- Fatigue, fracture, tensile tests
- Pressure vessel with internal transducers
 - Specimen load: strain gage load cell
 - Specimen displacement: LVDT
 (linear variable differential transformer)

Design concept of pressure vessel

^{*} Material: A286 Precipitation hardened austenitic stainless steel

Design concept of pressure vessel

^{*} Material: A286 Precipitation hardened austenitic stainless steel

Construction of dynamic U-cup seals

In situ transducers

7075-T6 aluminum

Karma alloy SK-13-150-350 Full bridge 8 strain gages

Strain gaged Load cell

Vented LVDT

CT specimen assembly with LVDT and DCPD

Test capability boundaries

	Tensile/fracture	Fatigue	
Pressure	3-138 MPa	3-138 MPa	
Temperature	21 °C	21 °C	
Force	44 kN	22 kN	
Displacement	25 mm	5 mm	
Test control	.025-25 mm/s: tensile 1 minute – 1 day : Fracture	0.001-10 Hz	

Gas management

To test

vessel

High pressure regulator

Manual operation

Accumulator / replenisher

 High pressure regulator with self-venting feature

Gas sample station

Perodic test gas sampling

Gas analysis by outside vendor

Accumulator / replenisher

Test gas quality control

Pressure vessel and manifold purging

- (4) helium purges, 14 MPa
- Vacuum, 20 minutes
 - Vacuum roughing pump
 - 1 to 5 mTorr
- (4) hydrogen purges, 14 MPa
 - 99.9999% pure hydrogen

Safe operations using engineering controls

- Explosion rated test cell
- Exhaust ventilation
- Secondary containment
- H₂ sensors integrated with ventilation
- H₂ supply interlocks
- (Limited H₂ volumes) < LFL (lower flammable limit)

- ASME rated vessel
 BPVC Sect VIII, Div 2
- Material: A286
- Main seal vent ports

Hydrogen compatible material in all wetted components.

Safe operations during setup and test using administrative controls

- Education, training, and documentation
- Operational procedures
 - Hydrogen never exposed to air
 - Air/helium/hydrogen/helium/air
- Safe guards
 - Locked test cell
 - Controlled access to laboratory

Challenges and successes with test operations

- Test hardware
- Infrastructure hardware
- Gas management
- Test control

Test hardware

Test hardware, continue

Hardware	Challenge	Solution
Feed-through connector	Explosive decompression 100-0.1 MPa	Increase decompression time to > 30 minutes.
Static o-rings	Explosive decompression 100-0.1 MPa	Increase decompression time to > 30 minutes.
Load cell	H2 induced zero drift	Allow 48 hours to condition load cell
LVDT	None	

	Hardware	Challenge	Solution
+	Newport gas compressor —	Check valve & diaphragm failures	No long term solution
	Tescom regulator	Explosive decompression of seals	Increase decompression time to > 30 minutes.
		Poor control using facility compressed air	Independent nitrogen gas supply

Conducting a test: Who's in control?

Challenges

Pull Rods uncoupling

- Software errors
- Limits applied loads
- Compromise load waveforms

High seal frictional forces, 4.4 kN at 100 MPa

- feed-back control
- Software over-command

Solutions

- Rigid fixturing
- Test control tuning
 - Seal friction
 - Test pressure
 - Frequency
 - Applied load
 - R-ratio
 - Compliance
 - Specimen material
 - Crack length

Test gas contamination

Challenge

Inadequate purging

Solution

- Change Procedures
- Frequent gas sampling
- Final test gas
 is not 99.999% pure H2
- Typical test gas
 - < 0.5 ppm O₂
 - < 3 ppm H₂O

Next generation test capabilities

Conclusion

- Advantages
 - High pressure
 - 138 MPa
 - Large frequency range
 - .001-10 Hz
 - Small vessel
 - Fits hydraulic test frames
- Disadvantages
 - Initial operational issues
 - High gas leak rate
 - Test control issues
- Enduring challenges
 - High pressure compressor
 - Diaphragm failures
 - Check Valve failures
 - Load cell transducer
 - Hydrogen effect on strain gages

Acknowledgements

- The ongoing support from the US Department of Energy, Office of Energy
 Efficiency and Renewable Energy, Fuel Cell Technologies Program is
 gratefully acknowledged.
- This capability is made possible by Hydrogen Effects on Materials team at Sandia National Laboratories in Livermore CA:

Dr. Brian Somerday

Dr. Chris San Marchi

Ken Lee

Jeff Campbell

Dr. Kevin Nibur

David Zanini

Ken Stewart

Mark Zimmerman

Thank You

Software

Test method

MTS
Basic TestWare
Station Manager 3.5B

ASTM E1820 fracture

MTS
Fatigue Crack Growth
Version 4.9

ASTM E647

Pressure vessel assembly sequence

Pressure vessel assembly sequence

Pressure vessel assembly sequence

Figure 20: Regulator and ER3000 Internal Operation

